Ecological Niche Modeling and Environmental Forecasting Using Remotely Sensed Data and A Genetic Algorithm

AIS Research Group

Dept. of Ecology and Evolutionary

Biology

Biodiversity Research Center University of Kansas

Global Environmental Data WOA

Ecological Niche Modeling and Biogeography - Overview

Environmental GIS

Specimen Records

Temperature

Salinity

Bathymetry

Dissolved Oxygen

Nitrates

Global Environmental Data WOA

Global Environmental Data MODIS

Environmental Coverages

World Ocean Atlas (1998) and Bathymetry

- Bathymetry Smith and Sandwell (1997)
- Temperature
- Salinity
- Dissolved oxygen
- Percent oxygen saturation
- Phosphate
- Nitrate
- Silicate
- Chlorophyll
- Apparent oxygen utilization
- Resolution: ca 60 km² (equator)

MODIS and Bathymetry

- Bathymetry Smith and Sandwell (1997)
- Sea surface temperature
- Suspended solid concentration
- Chlorophyll-a pigment concentration
- Inst. photosynthetically available radiation
- Calcite Concentration
- Resolution: 4.63 km²

Pterois volitans

Pterois volitans Native Range Data

introductions

Pterois volitans WOA Native Range

Pterois volitans WOA Data Atlantic

Pterois volitans Modis Native Range

Pterois volitans MODIS Palau Detail

Pterois volitans MODIS Atlantic

Pterois volitans MODIS Atlantic Detail

Pterois volitans MODIS Bermuda

Can We "Postdict" Invasions? Largemouth Basses in Japan

 Players: A consortium of KU and Japanese investigators including Wiley, McNyset, Peterson, Katherine Powers (KU non-thesis masters project on basses), David Vieglais (FishNet), Ricardo Scachetti-Pereira (DeskTop GARP), Kei'ichiro Iguchi (Institute of Fisheries Science, JP), Keiichi Matsuura (National Science Museum, JP), and Taiga Yodo (JP Science and Technology Corporation)

30 Year Averages of:

Diurnal temperature range

Ground frost frequency

Precipitation

Solar radiation

Minimum temperature

Mean temperature

Wet day frequency

Maximum temperature

Vapor pressure

Stream Profiles

Elevation

Aspect Flow accumulation

Slope Topographic index

Vegetation

Percent tree cover

Micropterus salmoides in NA

Native range data and prediction. Circles are localities used to model, triangles are localities used to test the model.

Micropterus salmoides in Japan

Predicted distribution and known introductions in Japan

Conclusions

- GARP modeling yields statistically significant ecological forecasts of species in both the freshwater and marine environments.
- In the marine environment, MODIS coverages perform better than station-based coverages for species in relatively shallow waters.
- GARP yields statistically significant "postdictions" of species invasions and can be used as a proactive tool for accessing invasive threats.

Acknowledgements

Town Peterson, Dick Robins, Kris McNyset, Pingfu Chen, Shannon DeVaney, Richardo Scachetti-Pereira, Aimee Stewart, Katherine Powers

FISHNET Distributed Biodiversity Information System

Office of Naval Research, N00014-00-1-0087

NSF Grant DEB21240

USGS Center for Aquatic Resource Studies

Temperate Invasive Threats

- Project: Model potential invasive species before they invade, or at least before they spread.
- Work carried out in concept with Jim Williams and Walt Courtney, USGS, Gainesville
- KU Players: Pingfu Chen (Asian invasive), Kris McNyset (European invasives) and Ed Wiley

Tale of Three Carps

- One step down the line: Can we project how invasive species might spread.
- Strategy: Find new and old invasive species and compare them.
- Players: Justin Williams (now at Colorado State, undergraduate researcher), Kris McNyset, Shannon Devaney

Cyprinus carpio, Native Range Model

C. carpio, 170 years in NA

Ctenopharyngodon idella, Native Range

C. idella, 40 years in NA

Mylopharyngodon piceus, Native Range

Mylopharyngodon piceus, new to NA

Hypothalmichthys molitrix

Marine Invasives

- An outgrowth of our original marine work.
- Strategy is similar to the freshwater project.
- Players: Wiley, McNyset, Robins
- Overall strategy: Can we use remotely sensed data to supplement or even replace certain kinds of station-based data?

Did We Miss Something?

Revisit some of the original work

Hummmm

- We seem to have predictive failure in some areas.
- The problem may reside in the coarse nature of the WOA data and the placement of stations in the Atlantic versus the Pacific.
- Can we find coverages that do not have this problem?
- Enter MODIS satellite data

Environmental Coverages

World Ocean Atlas (1998) and Bathymetry

- Bathymetry Smith and Sandwell (1997)
- Temperature
- Salinity
- Dissolved oxygen
- Percent oxygen saturation
- Phosphate
- Nitrate
- Silicate
- Chlorophyll
- Apparent oxygen utilization
- Resolution: ca 60 km² (equator)

MODIS and Bathymetry

- Bathymetry Smith and Sandwell (1997)
- Sea surface temperature
- Suspended solid concentration
- Chlorophyll-a pigment concentration
- Inst. photosynthetically available radiation
- Calcite Concentration
- Resolution: 4.63 km²

Chaetodon lunula

Chaetodon lunula MODIS Native Range

Chaetodon lunula MODIS Palau

Chaetodon lunula MODIS Atlantic

Chaetodon lunula MODIS Atlantic Details

GARP Rules

Atomic Rules
 IF temperature = 28°C & depth = 10 meters
 THEN present

• BIOCLIM Rules (Nix, 1968)

IF temperature is 22-28°C & depth 1-100 meters

THEN present

GARP Rules

Range Rules

Generalization of BIOCLIM rules with preconditions that must be satisfied, useful in negation and when there are environmental limitations.

Logit

GARP implementation of logistical regression